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SONIC-BOOM EXPOSURES DURING FAA COMMUNITY-RESPONSE STUDIES 

@YEB A &MONTE PERIOD I N  THE OKLAHOMA CITY AREA 

By David A. Hilton, Vera Huckel, Roy Steiner, 
and Domenic J. Maglieri 
Langley Research Center 

Measurements of sonic-boom ground overpressures have been made over a 
period of several months and f o r  several f l i gh t s  each day. 
both inside and outside of buildings at locations on the ground t rack and a t  
distances from the ground t rack of about 5 and 10 m i l e s .  
have been performed f o r  bath the  overpressure and impulse data. 

Data were obtained 

S t a t i s t i c a l  analyses 

The measured sonic-boom signatures were noted t o  vary widely both i n  peak 
amplitude and i n  wave shape because of atmospheric dynamic effects .  
overpressure values were associated with waves having short duration peaks where- 
as low overpressure values were associated with rounded-off waves resembling 
s ine waves. The variations of the  overpressures and impulses may be represented 
over t he  s ignif icant  range by log normal distributions,  the overpressures having 
a markedly wider range of variations than the impulses. Measurements a t  l a t e r a l  
distances of 5 o r  more miles indicated wider ranges of variations than similar 

The highest 

measurements on the  ground track. 

For the  same values of overpressure outside 
sure values 
appreciably 

were greater  f o r  exposures of longer 
f o r  marked differences i n  wave shape 

INTRODUCTION 

The ef fec ts  of sonic booms are an important 
Of particular operation of supersonic a i r c ra f t .  

of a building, the inside pres- 
wave length but did not vary 
f o r  a given wave length. BJ 
consideration i n  the  overland 
significance i n  the  operation 

of proposed supersonic transports i s  the  reaction of communities t o  sonic-boom 
exposures from repeated f l igh ts .  Only a limited amount of information relative 
t o  t h i s  repeated exposure problem i s  available. 
Oklahoma City experiments sponsored by the  Federal Aviation Agency and par t ic i -  
pated i n  by other agencies and organizations, t he  NASA being responsible f o r  the  
measurement of sonic-boom exposures i n  the  t e s t  area. 
paper i s  thus primarily concerned with these lat ter measurements. 
t o  describing the  sonic-boom exposure of the community, the  data i l l u s t r a t e  some 
of t he  e f f ec t s  of t he  atmosphere during sonic-boom propagation. 

This fac t  has l ed  t o  the 

The material of t h i s  
I n  addition 
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I n  previous experiments, some var ia t ions of wave shape and overpressure 
values were found t o  ex is t  and were ascribed t o  atmospheric e f fec ts .  
ref. 1.) These effects  were noted t o  be related t o  conditions of the  atmosphere 
near the ear th ' s  surface. Such r e su l t s  were obtained during a se r i e s  of s tudies  
t h a t  were rather  l imited both i n  terms of number of f l i g h t s  and t i m e  duration. 
The Oklahoma City experiments have provided the opportunity t o  evaluate possible 
effects  on the sonic-boom signatures of t h e  atmosphere and weather f o r  an 
extended period of t i m e  and f o r  a re la t ive ly  large number of f l igh ts ;  however, 
only a p a r t i a l  analysis has been made t o  date. 

(See 

The purpose of t h i s  paper i s  t o  document the  sonic-boom pressure exposures 
during these experiments and, i n  par t icular ,  a t  three measuring s ta t ions  f o r  
about 1225 f l i g h t s  i n  the  t i m e  period February 3,  1964 t o  Ju ly  30, 1964. 
are tabulated f o r  each f l i g h t  so  tha t  they may be correlated with information 
generated by other organizations par t ic ipat ing i n  t h i s  program. Included are 
analyses of some specif ic  s e t s  of data such as categorizations of waveforms and 
s ta t is t ical  breakdowns of overpressures and posi t ive impulses. 

Data 

SYMBOLS 

B 

airplane cross-sectional area, sq f t  

nondimensional cross-sectional area A/Z2 a t  nondimensionalized 
s ta t ion  t = x/i  

equivalent cross-sectional area due t o  l i f t  a t  airplane s t a t ion  x 

given by B = 

l i f t  coefficient 

l i f t i n g  force per un i t  length along airplane longitudinal ax is  

airplane f l i g h t  a l t i tude ,  f t  

impulse of sonic-boom ground-pressure signature 

ground ref lect ion fac tor  

length of airplane, f t  

Mach number 

reference pressure, lb/sq f t  

incremental pressure above ambient pressure due t o  flow f i e l d  of 
airplane, lb/sq f t  
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APi peak posit ive inside overpressure, lb / sq  f't 

pressure r i s e  across shock wave at ground level, lb/sq f t  *PO 

q dynamic pressure, lb/sq f t  

S w i n g  planform area, sq  f t  

t nondimensionalized distance d o n g  longitudinal axis from airplane 

A t 0  t i m e  duration of phase of sonic-boom ground-pressure signature 

X cylindrical  coordinate measured along body axis, f t  

Subscripts : 

calc calculated 

max maximum 

meas measured 

PO S posit ive 

The following symbols and def ini t ions are used i n  tables I t o  XXI t o  
denote weather conditions: 

Surface winds: 

F i r s t  number i n  column i s  direction ( t rue north) from which wind i s  blowing; 
second number i n  column i s  wind velocity i n  knots. 

Cloud cover: 

0 clea r  

scattered (D 
0 broken 

03 overcast 

x obscuration 

Precipi ta t ion : 

A minus sign before type of Precipitation indicates that the precipi ta t ion 
w a s  l i gh t ;  otherwise, precipi ta t ion was moderate. 
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E 

F 

GF 

H 

L 

R 

Rw 

S 

T 

ZR 

sleet 

ground fog 

haze 

dr izzle  

ra in  

ra in  showers 

snow 

thunderstorm 

freezing rain 

APPARATUS AND METHODS 

Test Conditions 

Test f l i g h t s  f o r  which data are  presented were made i n  the Greater Oklahoma 
City area along the track indicated i n  figure 1. 
vation of about 1,700 feet above sea l eve l  and includes a population of about 
750,000 people i n  i t s  urban, suburban, and mral regions. Several f l i gh t s  per 
day were made s ta r t ing  i n  February 1964 and continuing through July 1964. 

This general area has an ele- 

Test Airplanes 

Photographs of the airplanes of the  types used i n  these t e s t s  are shown i n  
f igure 2. 
varying from 14,000 t o  19,000 pounds. 
67.5 fee t  and a gross weight varying from 34,000 t o  45,000 pounds. 
has an overall length of about 71 f e e t  and a gross weight of about 35,000 pounds. 
Airplane D has an overall  length of 96.8 fee t  and a gross weight varying from 
100,000 to 116,000 pounds. Aircraft  of these types have been used i n  other 
sonic-boom f l igh t - tes t  programs and some de ta i l s  such as area distributions,  
fineness ratios,  and shape factors  are  given i n  references 1 and 2. 
planes were maintained and operated by U.S. A i r  Force personnel. 

Airplane A has an overall  length of 54.5 f ee t  and a gross weight 
Airplane B has an overall  length of 

Airplane C 

The air- 

Aircraft  Operations and Positioning 

The a i r c ra f t  were operated i n  the  a l t i t ude  range 21,000 t o  5O,OOO f ee t  and 
the Mach number range 1 .2  t o  2.0. 
over t he  t e s t  area and along the  prescribed ground t rack (see f ig .  1) by means 
of ground-control procedures with the a id  of radar tracking. 
t r o l l e r  was located i n  Fort Worth, Texas, and the radar antenna w a s  located 
within the Oklahoma City area. (See f ig .  1.) Most of the  f l i g h t s  were made on 

The airplanes i n  a l l  cases were positioned 

The ground con- 
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a heading of 0490 magnetic. On February 19 and 29, the  f l i gh t s  were made on a 
heading of 2 2 9 O  magnetic; on April 28, the heading f o r  flights 1 t o  4 w a s  310’ 
magnetic, and f l i g h t s  5 t o  8 were on 130° magnetic; on April  29, f l i g h t s  1 t o  4 
were made on a heading of 170° magnetic, and f l i gh t s  5 t o  8 on 350° magnetic. 
Fl ights  on March 7 were conducted on t h e  &go magnetic heading, but t h e  air- 
plane was displaced 8 miles t o  the north of the  or iginal  track. 
Snare? overlays were obtained f o r  a l l  f l igh ts ,  and the  data were used t o  provide 
information on a i r c ra f t  plan position and ground velocity. 
from a Ground Control Intercept s ta t ion  located in  Oklahoma City. 
values l i s t e d  i n  the data tables  a re  separation distances, tha t  is, the  actual 
distance from the  airplane t o  the ground surface. 

Radar plotting- 

Altitude w a s  obtained 
All a l t i t ude  

Each a i r c r d t  w a s  directed on the  f l igh t  t rack such tha t  the desired Mach 
number and a l t i t ude  conditions were reached when the  a i r c r a f t  was i n  the  v ic in i ty  
of Minco, Oklahoma and were maintained t o  the general v ic in i ty  of Arcadia, 
Oklahoma. 
measuring s ta t ions indicated i n  figure 1 were associated with steady-level f l i gh t  
conditions of t h e  a i r c ra f t .  
beyond the  point shown i n  f igure 1 t o  permit two passes t o  be made during one 
f l i g h t .  For some of these l a t t e r  flights, acceleration e f fec ts  as indicated by 
a double-boom disturbance (see ref.  3 )  were noted t o  exist i n  the  Oklahoma City 
t e s t  area. Only the  f i r s t  t o  arr ive pressure signature, which i n  a l l  cases w a s  
t he  most intense, has been included i n  the data tabulations. 

When these procedures were used, the sonic booms observed a t  the 

I n  some cases the acceleration portion was extended 

Atmospheric Soundings 

Rawinsonde observations from the  U.S. Air Force weather f a c i l i t y  located 
at W i l l  Rogers Field, Oklahoma (see f i g .  1) were taken within 1 hour of the  
times of a l l  of t he  supersonic f l igh ts .  Measured values of temperature and 
pressure, along with the  calculated speed-of-sound and humidity values and wind 
velocity and direct ion values, were provided up t o  at least the  airplane test 
a l t i tude .  

I n  addition t o  the  four rawinsonde observations which were obtained during 
each day, surface measurements of temperatures, winds, and so for th  w e r e  obtained 
along with information relayed by the pi lots  during t h e i r  ascent t o  a l t i t ude  and 
during the actual  supersonic run. 
p i l o t s  included indications of turbulence, cloud cover, and precipitation. 

The type of information obtained from the 

Pressure Instrumentation 

The main components of the measurement systems used for sonic-boom pres- 
sures are the  same as those described i n  more d e t a i l  i n  reference 1. Each chan- 
ne l  of t h e  system as used i n  the experiments consisted of a specially modified 
microphone, tuning unit ,  d-c amplifier, and oscillograph recorder. The usable 
frequency range was from 0.1 t o  5,000 cycles per second, and t h i s  range applies 
t o  a l l  t he  da ta  presented herein. 
about 70 t o  about l’jO dB. 
tes t  by means of a pressure bellows and a sensit ive manometer. 
ins ta l la t ion ,  frequency-response curves were obtained f o r  a l l  microphones. 

The microphones have a dynamic range from 
They w e r e  f ield-calibrated s t a t i c a l l y  before each 

Pr ior  t o  f i e l d  
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Sonic-boom pressure measurements were made both inside and outside the 
three t e s t  buildings. 
l eve l  i n  the surface of a plywood ref lect ing board, as shown i n  figure 9 of 
reference 1. 
ments were used at a l l  times. 
a t h i n  p las t ic  cover was draped loosely over the  wind screens. 

Each outside microphone was shock mounted a t  ground 

Wind screens designed so as not t o  a f fec t  the pressure measure- 
When measurements were made during precipitation, 

For the inside measurements, each microphone was shock mounted a t  approxi- 
mately 5 fee t  from the f loor  leve l  near the  center of the  room. 
were used t o  make inside and outside measurements at each of the three meas- 
uring stations noted i n  figure 1. 

These setups 

I n  order t o  obtain information on the s izes  of areas affected by given 
leve ls  of ground overpressure, a special  multiple array of microphones w a s  used 
f o r  simultaneous measurements a t  selected locations. Simultaneous recordings 
from each of the 3 microphones were made fo r  several fl-lghts f o r  microphone 
separation distances from 50 t o  200 f ee t  i n  s t ra ight  l ines  para l le l  t o  and per- 
pendicular t o  the f l i g h t  track of the a i r c ra f t .  These data were taken i n  open 
areas a t  locations near the ground track and a l so  a t  l a t e r a l  distances of about 
8 m i l e s  on ei ther  side of it. 

Sonic-Boom Calculations 

Sonic-boom calculations a re  included i n  t h i s  paper only f o r  airplanes A 
and B since these airplanes are  the ones f o r  which suff ic ient  data  were obtained 
f o r  s ta t is t ical  analyses. The method of performing the  calculations i s  the  Same 
as t h a t  outlined i n  the appendix of reference 1. Both volume and l i f t  were con- 
sidered and i n  the manner i l l u s t r a t ed  i n  f igure 3. The assumed volume dis t r ibu-  
t ions and lift dis t r ibut ions f o r  each airplane are  shown i n  figures 3(a) and 
3(b), respectively. 
boom characterist ics f o r  each a i r c ra f t  are  determined by mach-lne computing pro- 
cedures in parametric form as  indicated i n  figure 3(c) .  

From the basic l i f t  and volume distributions,  the sonic- 

I n  the calculations f o r  signature wave lengths which a re  required i n  
determining the impulse functions, it was assumed tha t  fa r - f ie ld  conditions 
existed and tha t  l i f t  effects  could be neglected. I n  the calculations of wave 
lengths, the  method of reference 4 was used and the  duration of the  posit ive 
phase o f t h e  wave was assumed t o  be equal t o  that of the negative phase. 

RESULTS AND DISCUSSION 

Wave Shapes 

The type of experimental data  obtained i n  the  measurements of the present 
studies i s  i l l u s t r a t ed  i n  figure 4, which shows sample outside and inside sonic- 
boom pressure signatures. The outside pressure signature is  of the  N-wave type, 
whereas the inside pressure signature has the  general appearance of a damped 
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sine wave. 
maximum posit ive deviation from loca l  atmospheric pressure, as indicated i n  the 
figure . 

The peak overpressure values i n  either case are  defined as  t he  

From a study of the data obtained, it was found tha t  the outside pressure 
t races  varied mStrkedly i n  character such that  it was useful t o  categorize them 
as indicated i n  figure 5. The characterist ic wave shapes a re  presented on the  
left-hand side of the figure, and word descriptions, on the right-harid side.  
I n  cases where wave shapes did not f a l l  naturally into one of the  categories 
i l lus t ra ted ,  a two-letter designation was assigned; f o r  instance, a type "Np" 
w a s  judged t o  be intermediate between type "N" and type "P." 
f igure are  definit ions of such quantit ies as posit ive impulse 
t i o n  of the posit ive phase of the wave Ato, which a re  l i s t e d  i n  the main data  
tables  along with peak overpressure and wave-shape categories. 

Also shown on the 
IO and the  dura- 

Tabulations of Data 

The measured data as determined from time-history records such as those of 
f igures  4 and 5 are  l i s t e d  i n  tables  I t o  XXI. 
l i s t e d  chronologically f o r  each a i r c ra f t  and a l t i t ude  combination. I n  addition 
t o  the sonic-boom signature data f o r  the three measurement stations, some asso- 
ciated weather and a i r c ra f t  operating condition information i s  included. Where 
there  a re  no entr ies  i n  the  table, e i ther  the data do not exis t  o r  could not be 
properly interpreted. 

The data  i n  each table  a re  

For the convenience of the reader, and t o  indicate sample size, t ab le  XXTI 
has been prepared t o  include the number of d a t a  records at  each measuring s ta t ion  
f o r  various f l i g h t  conditions, along with the number of t he  appropriate tab le  
(see tab les  I t o  X X T )  i n  which the data a re  included. 
inspection of tab le  XXII t ha t  a la rger  number of f l i g h t s  were conducted f o r  
some t e s t  conditions than f o r  others, and thus these resu l t s  a r e  of greater  
s t a t i s t i c a l  significance. 

It i s  obvious from an 

Variations f o r  a Series of Flights 

The data of tables  I t o  X X I  have been studied i n  d e t a i l  t o  determine the 
The resu l t s  of 

In  these figures the data have 
manner i n  which the  peak overpressure and impulse values vary. 
these studies a re  included i n  figures 6 t o  9. 
been plotted as re la t ive  cumulative frequency dis t r ibut ions and thus, on the 
ordinate scales, give the probability of equaling or exceeding the given values 
of the  abscissas. 

The data  of figures 5, 6, and 7 i l l u s t r a t e  t he  variation of the peak over- 
pressures f o r  the en t i re  range of f l i gh t  conditions f o r  airplanes A and B a t  
each of three measuring s ta t ions.  I n  figures 8 and 9 the variations of the 
impulse values f o r  these two a i r c ra f t  a re  shown by means of similar plots .  
t h e  data have been plot ted on log normal paper and s t ra ight  l ines  have been 
fa i red  through the data points as an a id  i n  in terpretat ion.  

All 

For t h i s  type of 
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presentation, t he  data points would a l l  f a l l  on a straight l i n e  i f  the loga- 
rithms of the  data f i t t e d  a normal dis t r ibut ion.  

In  each case t h e  opportunity i s  taken t o  plot  on the  abscissa scale the  
r a t i o  of measured t o  calculated values of e i the r  overpressure o r  impulse. 
measured value of overpressure or  posi t ive impulse f o r  any par t icu lar  f l i g h t  
may be obtained from the appropriate column of tab les  I t o  XXI. 
values, on the other hand, may be obtained from t ab le  XXTI. 
f igure  is a n  i n se r t  sketch (histogram) showing probabili ty of occurrence of 
various values of the  abscissa quantity. 

The 

The calculated 
A l s o  shown i n  each 

Several observations can be made from the data of f igure 6. L e t  us f i rs t  
focus our a t ten t ion  on the data of figure 6(a) which relates t o  the  measuring 
s t a t ion  on the ground track. The data  seem t o  follow a log normal d is t r ibu t ion  
with the exception of the low-valued points and t h i s  i s  a rather  general r e su l t  
of the experiments. 
noticeably l e s s  than 1. I n  fact ,  about 80 percent of t h e  measurements f o r  t h i s  
par t icular  condition were lower i n  amplitude than would be predicted and only 
about 20 percent equaled o r  exceeded the predicted value. 
t h a t  there i s  a probabili ty of about 1 percent (0.01) tha t  the measured value 
w i l l  equal or exceed the  predicted value by 50 percent. 

The median value of t h e  pressure r a t i o  f o r  t h i s  case i s  

It can a l so  be seen 

Figures 6(b) and 6(c)  include similar data but f o r  locations about 5 o r  
10 miles, respectively, off  t h e  track. It can be seen t h a t  as the  distance from 
the  track i s  increased, t h e  var ia t ion i n  amplitude tends t o  be greater  and t h e  
median value i s  nearer uni ty  than f o r  t h e  locat ion on t h e  t rack.  It i s  not 
known whether these differences are due t o  sampling variations, a longer ray 
path i n  the presence of turbulence, a large-scale temperature anomaly, a 
shif t ing of the exposure pat tern because of cross winds (see ref. 5 ) ,  o r  some 
combination of these phenomena. 

There i s  a l so  a t rend toward greater  deviations from t h e  log  normal dis-  
t r ibu t ion  curve i n  the  low-amplitude range f o r  grea te r  l a t e r a l  distances.  
data  show about a 1-percent probabili ty of equaling o r  exceeding measured values 
which are  2 t o  & times t h e  predicted values. This r e su l t  should not be in te r -  

preted t o  mean t h a t  t h e  actual  overpressures a re  necessarily higher than f o r  t h e  
on-the-track location since t h e  off-the-track calculated values are, of course, 
generally lower (see tab le  XXrI). 
f igure 7. The 
median values and t he  range of pressure-ratio values are noted, however, t o  be  
higher f o r  airplane B. 

The 

2 

Similar da ta  f o r  airplane B are shown i n  
It can be seen t h a t  t he  same general trends of t he  data ex is t .  

It i s  believed t h a t  if the  aircraft  speed, weight, and a l t i t ude  were held 
absolutely constant and t h e  atmospheric conditions constant, t he  overpressure 
values would be equal f o r  a l l  f l i gh t s .  
t o  another a re  not constant, but ra ther  vary i n  amplitude over a considerable 
range. 
c ra f t  f l i gh t  conditions, s m a l l  var ia t ions due t o  measuring technique and instru-  
ment inaccuracies, and var ia t ions due t o  t h e  weather. For t h e  da ta  i l l u s t r a t ed ,  
t h e  weather effects  are Judged t o  be dominant. 

The overpressure values from one f l i g h t  

These var ia t ions may be due t o  such fac tors  as small var ia t ions i n  air- 
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The posit ive impulse functions have been determined f o r  the  experiments of 
figures 6 and 7 and are  presented, respectively, i n  f igures 8 and 9. Log normal 
p lo ts  a re  presented and the data a re  coded i n  the same way as for figures 6 
and 7. 
nature t o  those f o r  the  overpressures; however, the range of values i s  markedly 
less .  
t he  predicted value, whereas the  reverse i s  t rue i n  f igure 9. 
not presently understood; hovev?r, the use of the fa r - f ie ld  theory of refer- 
ence 4 may resu l t  i n  overestimating calculated impulse values fo r  airplane A 
and i n  underestimating them f o r  airplane B. 

The variations i n  the  impulse functions are  noted t o  be similar i n  

It can be seen from figure 8 tha t  the median value i s  generally l e s s  than 
This resul t  is  

Variations fo r  a Given Flight 

The data  presented i n  tables I t o  XXI and i n  figures 6 and 7 indicate the 
type of variations of the  pressure exposures a t  discrete  measuring points over 
a period of t i m e  during which atmospheric changes occurred. 
vide some information re la t ive  t o  the variations occurring i n  specif ic  areas on 
the ground as a resul t  of a single f l igh t ,  experiments were performed with a 
special  microphone array i n  which the individual microphones were accurately 
spaced and oriented re la t ive  t o  the  f l i g h t  track. 
manner are  presented i n  figures 10 and 11. 

I n  order t o  pro- 

Sample data  obtained i n  t h i s  

The data  of figure 10 represent an  overall callbration of the  individual 
microphones i n  the  array. They were placed within a few inches of each other 
f o r  one of the f l i gh t s  i n  order t o  check f o r  repeatabi l i ty  and t o  determine the  
amount of variation inherent i n  the  f i e l d  use of these instruments. Tracings 
were m a d e  of the  pressure-time his tory records and are  presented i n  the figure.  
It i s  obvious tha t  the wave shapes a re  nearly identical ,  since the  systems a r e  
closely matched i n  frequency response and are closely grouped t o  minimize atmos- 
pheric effects.  A s  i l l u s t r a t ed  i n  f igure 10, the var ia t ion i n  the  resu l t s  from 
the  average value which may be ascribed t o  instrument differences and calibra- 
t i o n  and reading errors  i s  noted t o  be less  t h a n  about k7 percent. 

For the  experiment t he  sensit ive diaphragm element of the  microphone was 
located about 6 inches above and parallel to  the  ref lect ing surface, and t h i s  
location accounts f o r  the  small steps i n  the steeply r i s ing  portions of the 
waves at both the i n i t i a l  and f i n a l  compressions. 
t ioning scheme was used t o  obtain the  data of f igure 11. 

The same microphone posi- 

In  f igure 11 are  presented tracings of the measured waveforms from the 
accurately calibrated and oriented array of matched microphones. 
i l l u s t r a t e  the variations of waveforms obtained f o r  given f l i g h t s  f o r  which the 
a i r c r a f t  operating conditions are essentially constant. The waveforms are  pre- 
sented i n  the  proper time sequence and are d i rec t ly  comparable i n  amplitude. 
A l l  data  of the  f igure were recorded f o r  microphone separation distances of 
200 fee t .  Data are  presented f o r  f l i g h t s  a t  times 2 hours apart  on the same 
day. 
distance on the  ground of a few hundred feet, and tha t  the variations were dif-  
fe ren t  f o r  the two f l i gh t s .  The widest variation occurred f o r  the  data of fig- 
ure l l ( a ) ,  where a def in i te  progression was noted from a highly peaked wave of 

These data 

It can be s e e n t h a t  a wide variation i n  wave shape occurred even over a 
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re lat ively large overpressure a t  the f irst  measuring poiiit t o  a rounded-off 
wave of re la t ively low overpressure. The data of figure l l ( b )  a l so  suggest a 
def in i te  progression of events. A study of a ser ies  of recordings such as these 
and others of a similar nature taken during the experiments suggests a r i s ing  
and fa l l ing  of the peak overpressure values along wi th  corresponding wave shape 
changes as a function of distance along the ground. The peak overpressure value 
r i s e s  and falls as  a function of distance i n  much the  same manner as the surface 
l eve l  of the  ocean i n  the  presence of waves. 
significant differences i n  wave shape were measured a t  separation distances as 
small as 30 feet .  Such variations as  these, which have a l so  been observed on 
other occasions (see ref .  l), are  believed t o  resu l t  from temperature and veloc- 
i t y  anomalies i n  the  atmosphere, par t icular ly  i n  the lower layers.  

Although not shown i n  the figure, 

Lateral-Spread Patterns 

In  order t o  summarize the resu l t s  pertaining to  the  lateral-spread patterns 
i n  the t e s t  area, the  comparable pressure data  a re  plotted i n  f igure 12 as a 
function of distance from the  ground track of the a i r c ra f t .  
f o r  eight f l i g h t s  during a par t icular  day and include measurements made at three 
permanent measurement s ta t ions and with the use of a mobile recording s ta t ion  
at  an 8 4 1 e  distance on the opposite side of the track. 
manent recording stations,  one data point w a s  obtained f o r  each f l i gh t ,  whereas 
f ive  data points were recorded f u r  each f l i g h t  a t  the mobile recording s ta t ion.  
There i s  noted t o  be some sca t t e r  i n  the overpressure values a t  a l l  measuring 
s ta t ions.  The most s ca t t e r  and the highest overpressures occur a t  s ta t ion  3 
f o r  the operations on t h i s  par t icular  day. From an inspection of similar data 
f o r  operation on other days, it w a s  noted tha t  the largest  s ca t t e r  and highest 
overpressures do not always occur a t  s ta t ion  3,  but a l so  might occur a t  any of 
t he  other s ta t ions.  Also shown i n  the figure i s  a calculated curve of nominal 
overpressure values f o r  these f l i g h t  conditions along with the calculated cut- 
off points f o r  atmospheric refraction, a zero wind condition being assumed. 
(See ref. 6.) 
generally from l e f t  t o  r ight  (northwest t o  southeast). 
most days of operation. There i s  a poss ib i l i ty  of a sh i f t ing  of the  whole pres- 
sure pattern, generally t o  the  right, f o r  such wind conditions. Such a s h i f t  
of the pressure pattern i s  judged t o  have occurred on some occasions when wave- 
forms of type C ( see f ig .  5 )  were measured at  the  upwind measuring s ta t ion .  
Such waveforms are  consistently measured near the  edge of the pressure pattern.  
Another r e su l t  which suggests some shif t ing of the  pressure pat tern i s  the f ac t  
t ha t  i n  many cases, as f o r  instance those of f igure 12, measured overpressures 
a t  s ta t ion 3 were a s  high as o r  higher than those at s ta t ion  1. 

Data a re  included 

For each of the per- 

For the data shown i n  the figure, there  w a s  a prevailing wind 
Such a wind occurred on 

Correlation Between Inside and Outside Measurements 

The measured data have been analyzed f o r  the  purpose of establishing some 
correlation, i f  possible, between the  inside measurements and the  outside meas- 
urements. 
indication of the overall  dynamic response of the  building since it integrates 
a l l  the pressure fl.uctuations i n  i t s  v ic in i ty  because of the motlons of the 

There i s  reason t o  believe tha t  the  inside microphone may give an 
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building components. Such a measurement might, therefore, be s ignif icant  with 
regard t o  judgments of acceptabili ty by indoor observers. One of the findings 
of these studies i s  i l l u s t r a t ed  i n  f igure 13. In  the upper par t  of the figure 
a re  shown two markedly different  waveforms as measured f o r  airplane A a t  the 
outside microphone measuring location of station 1. Even though the  overpres- 
sure values and.the associated wave shapes differ,  the  wave lengths are  nearly 
the  same. 
ured a t  the  inside microphone location of the t e s t  building. The most obvious 
resu l t  is  tha t  the inside pressure t races  are very nearly ident ical  despite the  
marked differences i n  the outside pressure traces. 

The bottom trazeP are  the  corresponding pressure-time h is tor ies  meas- 

The resu l t s  of f igure 13, of course, apply t o  a par t icu lar  a i r c ra f t .  D i f -  
ferent  resu l t s  a r e  obtained, as i l l u s t r a t ed  in  f igure 14, f o r  different  a i r -  
craf t .  
c r a f t  A and D, and i n  the lower par t  of the  figure a re  the corresponding inside 
pressure traces.  
the  major difference i s  i n  the wave length. The inside pressure t races  a re  
seen t o  d i f f e r  markedly i n  character, the trace with the fluctuations of lower 
frequency being associated with the  outside wave of longer duration or  wave 
length. 

I n  the  top par t  of the f igure a re  the outside pressure t races  f o r  a i r -  

Although the outside pressure t races  d i f f e r  i n  some detai l ,  

These resu l t s  suggest tha t  the peak pressure alone is  not the  dominant 
fac tor  i n  building response, but t ha t  a combination of peak pressure and t i m e  
duration (impulse) may be lmportant. 
comparable inside and outside measurements t o  i l l u s t r a t e  a possible correlation 
of these data. Inside peak overpressures are plotted as a function of posit ive 
impulse values as determined from outside pressure measurements and as l i s t e d  
i n  tab les  I t o  XM. 
are  represented by the  hatched areas. 
increase generally as the outside impulse values increase and thus tend t o  be 
higher f o r  the larger  a i r c ra f t .  

Figure 15 contains a presentation of the 

The large number of data points f o r  both a i r c ra f t  A and B 
The inside pressure values are  noted t o  

Inside Acoustic Measurements 

I n  f igures  13 and 14, some examples are shown of the  nature of the inside 
pressure signatures f o r  various flight conditions. 
pressure is  slow, the  peak value i s  less ,  and the  duration i s  markedly longer 
than f o r  the  corresponding outside signature. 
t i o n  modes a re  the  dominant contributors, the resul t ing pressure t i m e  h is tory 
has a large low-frequency content, some of which i s  subaudible. I n  order t o  
determine the  contribution of the  high-f requency components, some recordings 
were made f o r  the range 100 t o  5000 cps. 
frequency range did not exceed about 90 dB. 
reaction problem of the  low-frequency or  subaudible components and the high- 
frequency acoustic components remain t o  be evaluated. 

I n  general, the  onset of 

Since the primary building vibra- 

The peak noise levels  i n  t h i s  l a t t e r  
The re la t ive  importance i n  the 

I 
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CONCLUSIONS 

Analyses of sonic-boom pressure measurements made i n  the  Oklahoma City 
area over a 6-month period and f o r  varying atmospheric conditions and f l ight  
conditions indicate the  following conclusions: 

1. Wide variations i n  ground pressure signature were observed with cor- 
responding wide variations i n  the  peak overpressure and t o  a lesser degree, 
variations i n  the posit ive impulse function. 

2. Variations of overpressure and impulse may be represented by a log nor- 
mal dis t r ibut ion (normal. dis t r ibut ion of t h e i r  logarithms) over the s ignif icant  
ranges. 

3 .  One percent of the measured overpressures equaled or exceeded the pre- 
dicted values by a fac tor  of about 1.5 t o  3.0 depending on the distance rela- 
t i v e  t o  the ground track; the larger  fac tor  w a s  associated w i t h  the larger  
distances and with the lower predicted value. 

4. One percent of the measured posi t ive impulse values equaled or exceeded 
the  predicted values by a fac tor  of about 1.2 and 2.0 depending on t h e  distance 
from the ground track, the large fac tor  being associated w i t h  the  la rger  dis-  
tances and w i t h  the  lower predicted value. 

5.  Measurements a t  several points f o r  a given flight show a lso  a varia- 
An t i o n  i n  wave shape as a function of distance i n  the direction of f l ight .  

orderly progression of wave shape i s  suggested by the data  from a highly peaked 
wave at one point t o  a ruunded-off wave at another and vice versa. 

6. Measured pressure signatures inside of a building were lower i n  ampl i -  
tude and longer i n  duration than the  corresponding outside pressure signatures 
and were dominated by frequency components corresponding t o  the pr incipal  vibra- 
t i o n  modes of the building. 

7. The levels  of the  pressures inside of a building i n  the  range Of fre- 
quencies 100 t o  5000 cps are about 30 dB lower than those i n  the range 0.1 t o  
7000 cps; thus, an inside observer is  subjected t o  strong pressure variations 
i n  the  subaudible range and re la t ive ly  weak pressure variations i n  t h e  audible 
range. 

8. For equal outside peak overpressures t h e  peak pressures inside a 
residential-type s t ructure  w e r e  greater  f o r  a longer wave length. 

9. Inside peak pressures were found t o  correlate  w e l l  with vibration i n  
the  positive impulse function of the  outside pressure signature. 
wave length they did not vary appreciably f o r  marked variations i n  the  wave shape. 

For a given 

Langley Research Center, 
N a t i o n a l  Aeronautics and Space Administration, 

Langley Station, Hampton, Va., October 14, 1964. 
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Figure 3 . -  Definit ion of inputs t o  sonic-boom overpressure calculations by the  machine 
computer procedures described i n  appendix of reference 1. 
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